最新提问
我的动态
登录后查看动态
题目内容双击单词支持查询和收藏哦~
$$a_1, a_2, a_3,.................a_n,......$$
In the sequence shown, $$a_{1}=4$$, $$a_{2}=2$$, and for all integers n greater than 2, $$a_{n}$$ is equal to the sum of the squares of $$a_{n-1}$$ and $$a_{n-2}$$. How many of the first 60 terms of the sequence are multiples of 3?
In the sequence shown, $$a_{1}=4$$, $$a_{2}=2$$, and for all integers n greater than 2, $$a_{n}$$ is equal to the sum of the squares of $$a_{n-1}$$ and $$a_{n-2}$$. How many of the first 60 terms of the sequence are multiples of 3?
A显示答案
· 相关考点
6.2.3 其他数列
6.3.3 其他数列
以上解析由 考满分老师提供。