题目列表

题目内容
$$3^{x}3^{y}$$=1

Quantity A

x+y

Quantity B

0


($$3^{8x}$$)($$Y^{3}$$)= $$3^{8x+3}$$

Quantity A

$$Y^{2}$$

Quantity B

9


y-x=1

Quantity A

$$\frac{5^{x}}{5^{y}}$$

Quantity B

$$\frac{1}{5}$$


If $$r=s^{2}$$, $$s=t^{3}$$, and $$t=u^{4}$$, what is $$r$$ in terms of $$u$$?
$$(3.8 \times 6^{25}) — (0.24 \times 6^{26})$$ =
$$\frac{x^{\frac{25}{2}}*x^{2}}{x^{n}}$$=$$x^{100}$$

$$n$$=?

Give your answer as a decimal.
$$2^{x^{2}-3x}$$=$$\frac{1}{4}$$

Quantity A

x

Quantity B

3


Quantity A

$$2^{-2}$$

Quantity B

$$4^{-2}$$+$$(-2)^{-2}$$


Which of the following is an odd integer?
The function $$f$$ is defined by f$$(x)=2^{-x^{2}}$$ for all integers $$x$$. Which of the following could be the value of $$f(x)$$?

Indicate all such values.
If $$0.6^{-n}$$ < 4, n is an integer, what is the greatest possible value of n?
$$x^{-1}y^{-1}$$>0

Quantity A

$$\frac{x^{-1}}{y^{-1}}$$

Quantity B

$$\frac{x}{y}$$


If $$(r-5)^{2}$$+$$(t+3)^{2}$$=0, then $$r^{t}$$=?
$$(2.82 \times 10^{-51} - 3.96 \times 10^{-49})$$=
$$14^{n}$$ is divisible by 32 (n is a positive integer)

Quantity A

n

Quantity B

5


Which of the following is the best estimate of $$\frac{(16.8)(10^{3})}{(0.51)(10^{-11})}$$?
0 < x < 1

Quantity A

$$\sqrt{x}$$

Quantity B

$$x^{-1}$$


n is an integer.

Quantity A

$$(\frac{2}{3})^{n}$$$$(\frac{3}{2})^{-n}$$

Quantity B

1


r > 0

Quantity A:The area of a circular region with radius r

Quantity B:The area of a circular region with radius $$r^{2}$$
n is a negative integer, and ab=1

Quantity A

$$a^{n}$$

Quantity B

$$b^{n}$$


共收录:

25000 +道题目

7本备考书籍

最新提问